A. F. J. Levi

From Wikipedia, the free encyclopedia
Anthony Levi
BornFebruary 3, 1959
NationalityAmerican
Alma materUniversity of Sussex
University of Cambridge
Known forMicrodisk nanolaser

Hot electron transport

Optimal semiconductor device design
Scientific career
FieldsPhysics
Electrical Engineering
InstitutionsBell Laboratories
University of Southern California

A.F.J. (Tony) Levi (born 1959) is a Professor of Electrical and Computer Engineering at the Department of Electrical and Computer Engineering of the University of Southern California (USC).

Academic career[edit]

Levi received his doctoral degree from the University of Cambridge in 1983. From January 1984 he was a member of the technical staff at Bell Laboratories in Murray Hill, New Jersey. He left Bell Laboratories in May 1993 to take up a professorial post at the University of Southern California.

Research[edit]

Levi has published research on experimental semiconductor device physics, including the experimental realization of the microdisk laser[1][2] for the study of semiconductor lasers at the nanoscale. He has published on hot electron spectroscopy in semiconductors,[3] ballistic electron transport in heterostructure bipolar transistors,[4] room temperature operation of unipolar transistors with ballistic electron transport,[5] and optimal design of small electronic and photonic systems.[6] He is also author of the textbook Applied Quantum Mechanics,[7][8] currently in its third edition. Levi's research has led to the development of new technologies, including advances in optical interconnect and x-ray imaging applications.

Working with Agilent Technologies, Levi co-developed an optical connector plug-in package capable of transmitting data at an aggregate rate of 10 Gb/s in late 2000.[9]

Working with the Paul Scherrer Institute and researchers at the USC Viterbi School of Engineering, Levi helped advance a non-destructive form of scanning and imaging computer chips known as ptychographic x-ray laminography. In principle, such a technique allows for defect detection in manufactured chips as well as for reverse engineering of hardware-embedded circuit design.[10][11]

In an interview with Reuters, Levi commented on supply chain concerns facing the chip industry in the U.S. during the COVID-19 pandemic, suggesting that such issues could be mitigated by focusing on rebuilding the U.S. chip manufacturing and packaging industry.[12]

Notable Talks[edit]

  • 2022 Plenary talk Chip Scan: 3D X-Ray Imaging of CMOS Integrated Circuits, PSW Science[13]

Publications[edit]

  • Levi, A. F. J.; Hayes, J. R.; Platzman P. M.; Wiegmann, W. (1985-11-04). “Injected Hot Electron Transport in GaAs” Physical Review Letters. American Physical Society (APS). 55 (19): 2071-2073. doi:10.1103/physrevlett.55.2071 PMID 10032002 ISSN 0031-9007
  • Levi, A. F. J.; Chiu, T. H. (1987-09-28). “Room Temperature Operation of Hot Electron Transistors” Applied Physics Letters. American Institute of Physics (AIP). 51 (13): 984-986. doi:10.1063/1.98784 ISSN 0003-6951
  • Levi, A. F. J. (1988-09-29). “Scaling ‘Ballistic’ Heterojunction Bipolar Transistors” Electronics Letters. Institution of Electrical Engineers (IEE). 24 (20): 1273-1275. doi:10.1049/el:19880867 ISSN 0013-5194
  • Berthold, K.; Levi, A. F. J.; Walker, J.; Malik, R. J. (1988-06-27). “Extreme Nonequilibrium Electron Transport in Heterojunction Bipolar Transistors” Applied Physics Letters. American Institute of Physics (AIP). 52 (26): 2247-2249. doi:10.1063/1.99545 ISSN 0003-6951
  • Gelfand, B. Y.; S. Schmitt-Rink S.; Levi. A. F. J. (1989-04-03). “Tunneling in the Presence of Phonons: A Solvable Model” Physical Review Letters. American Physical Society (APS). 62 (14): 1683-1686. doi:10.1103/PhysRevLett.62.1683 PMID 10039737 ISSN 0031-9007
  • Chuang, S. L.; Schmitt-Rink, S.; Greene, B. I.; Saeta, P. N.; Levi, A. F. J. (1992-01-06). “Optical rectification at semiconductor surfaces” Physical Review Letters. American Physical Society (APS).  68 (1): 102-105. doi:10.1103/PhysRevLett.68.102  PMID 10045123 ISSN 0031-9007
  • McCall, S. L.; Levi, A. F. J.; Slusher, R. E.; Pearton, S. J.; Logan, R. A. (1992-01-20). “Whispering-gallery mode microdisk lasers” Applied Physics Letters. American Institute of Physics (AIP). 60 (3): 289-291. doi:10.1063/1.106688 ISSN 0003-6951
  • Seliger, P.; Mahvash, M.; Wang, C.; Levi, A. F. J. (2006-08-08). “Optimization of aperiodic dielectric structures” Journal of Applied Physics. American Institute of Physics (AIP). 100 (3) 034310-(1-6). doi:10.1063/1.2221497 ISSN 0021-8979
  • Levi, A. F. J.; Rosen, G. (2010-01-15). “A novel formulation of the adjoint method in the design of quantum electronic devices” SIAM Journal on Control and Optimization. Society for Industrial and Applied Mathematics (SIAM). 48 (5): 3191-3223. doi:10.1137/070708330 ISSN 0363-0129
  • Levi, A. F. J.; Campos Venuti, L.; Albash, T.; Haas, S. (2014-08-24). “Coherent control of non-Markovian photon resonator dynamics” Physical Review A. American Physical Society (APS). 90 (2): 022119. doi:10.1103/PhysRevA.90.022119 ISSN 2469-9926

Books[edit]

References[edit]

  1. ^ McCall, S. L.; Levi, A. F. J.; Slusher, R. E.; Pearton, S. J.; Logan, R. A. (1992-01-20). “Whispering-gallery mode microdisk lasers” Applied Physics Letters. American Institute of Physics (AIP). 60 (3): 289-291. doi:10.1063/1.106688 ISSN 0003-6951
  2. ^ Levi, Barbara G. (September 1992). "What's the Shape of Things to Come in Semiconductor Lasers?". Physics Today. 45 (9): 17–18. doi:10.1063/1.2809793.
  3. ^ Levi, A. F. J.; Hayes, J. R.; Platzman P. M.; Wiegmann, W. (1985-11-04). “Injected Hot Electron Transport in GaAs” Physical Review Letters. American Physical Society (APS). 55 (19): 2071-2073. doi:10.1103/physrevlett.55.2071 PMID 10032002 ISSN 0031-9007
  4. ^ Berthold, K.; Levi, A. F. J.; Walker, J.; Malik, R. J. (1988-06-27). “Extreme Nonequilibrium Electron Transport in Heterojunction Bipolar Transistors” Applied Physics Letters. American Institute of Physics (AIP). 52 (26): 2247-2249. doi:10.1063/1.99545 ISSN 0003-6951
  5. ^ Levi, A. F. J.; Chiu, T. H. (1987-09-28). “Room Temperature Operation of Hot Electron Transistors” Applied Physics Letters. American Institute of Physics (AIP). 51 (13): 984-986. doi:10.1063/1.98784 ISSN 0003-6951
  6. ^ Levi, A. F. J.; Haas, S. (2010-01-29). “Optimal Device Design” Cambridge: Cambridge University Press. doi:10.1017/CBO9780511691881 ISBN 978-0-521-11660-2
  7. ^ Frensley, William R. (January 2005). "Applied Quantum Mechanics". Physics Today. 58 (1): 55–56. doi:10.1063/1.1881905.
  8. ^ Levi, A. F. J. (2023). “Applied Quantum Mechanics” (Third ed.). Cambridge University Press, ISBN 978-1-009-30807-6 doi:10.1017/9781009308083
  9. ^ Savage, Neil (August 1, 2002). "Linking With Light". IEEE Spectrum.
  10. ^ "Groundbreaking Method Detects Defective Computer Chips". USC Viterbi News. October 8, 2019.
  11. ^ "Technique Could Check Integrity of Computer Chips and Detect Tampering". Technology Networks. October 11, 2019.
  12. ^ Nellis, Stephen; Jin, Hyunjoo (April 13, 2021). "Focus: Biden's chip dreams face reality check of supply chain complexity". Reuters.
  13. ^ "Chip Scan: 3D X-Ray Imaging of CMOS Integrated Circuits". PSW Science. November 18, 2022.

External links[edit]