Draft:Tungsten Pollution and Remediation

From Wikipedia, the free encyclopedia

Tungsten Pollution and Remediation[edit]

Tungsten, also known as Wolfram, is a dense metal utilized in a wide range of industrial and military applications. Despite its common use, the full extent of its environmental impact remains unclear.[1] Previously, tungsten was thought to be stable in soil environments and non-soluble in water. However, recent studies have challenged this assumption, indicating that tungsten may behave differently under certain conditions.[2][3]

Sources of Tungsten Pollution[edit]

While naturally occurring in soil and rocks, human activities are the primary drivers of tungsten pollution, posing potential risks to ecosystems and human health. Mining and industrial processes are the major culprits.[3]

Mining: Tungsten extraction releases trace elements into the environment, contaminating soil, air, and water. Despite efforts to reuse mining waste, it often contains harmful elements like arsenic, posing potential risks.[4] Dissolved tungsten in wastewater further exacerbates the problem, making mining a leading contributor to environmental contamination.[3][5]

Metal Production and Manufacturing: Semiconductor manufacturing, particularly wafer production, utilizes tungsten, leading to its release through treated wastewater effluents. This, along with other heavy metals, can be suspended and deposited in sediments, impacting riverine environments.[6]

Military Ammunition: Military training bullets often contain tungsten-nylon composites. Upon impact, they fragment into tiny particles that coat soil, increasing the surface area exposed to environmental conditions. This enhances dissolution and corrosion, dispersing tungsten more widely and potentially leaching into water sources, further contributing to pollution.[7]

Behavior of Tungsten in the Environment[edit]

W in soil[edit]

Tungsten (W) in soil typically ranges from 0.1 to 5 mg/kg,[8][9] but in contaminated areas like military and mining sites, levels can soar up to 1000 times higher.[3]

In soil, W can exist in various chemical forms, affecting its mobility and bioavailability. Metallic W, generally considered environmentally benign due to its low solubility, can become more mobile under certain conditions, such as oxidation to soluble forms.[10] The solubility and behavior of W in soil are influenced by factors like soil pH, with increased solubility and potential for entering the food chain in alkaline conditions[11][12] The bioavailability of tungsten in soil is influenced by its organic matter content; soils with higher organic matter typically retain more tungsten than less organic-rich soils.[11]

W's interactions with soil components are complex, involving adsorption to minerals and organic matter, and can form various tungstate species, including polymers and polyoxometalates (POMs), which influence its environmental fate[13] The presence of natural dissolved organic matter (DOM) and humic substances can further decrease W mobility through adsorption and complexation processes.[14]

W in water[edit]

In aquatic environments, tungsten behavior varies with pH, W concentration, and ionic conditions. Under acidic conditions (pH < 5) and high W levels, polymerized W species dominate, while in neutral to alkaline conditions with low W levels, monomeric tungstate oxyanions are more common.[15][16] Thiotungstate forms can also occur in anoxic conditions.[17]

In water affected by industrial effluents, tungsten dissolved concentrations can reach 400 μg/L and particulate levels up to 300 μg/g in sediments, far surpassing typical river averages and underscoring the pronounced impact of industrial activities on its distribution in aquatic environments.[6]

Tungsten in marine ferromanganese oxides forms stable inner-sphere complexes with manganese oxides and exhibits distinct adsorption patterns compared to molybdenum, driven by complex stability and adsorption mechanisms.[18]

W's behavior in aquatic and terrestrial systems is complex, involving adsorption, precipitation, redox reactions, and polymerization, affected by concentration, pH, and water conditions.[3]Groundwater studies in the USA show that areas with high arsenic levels might also exhibit high W levels, particularly near W-rich minerals or geothermal activity.[19] This underscores the intricate interactions and transformations of W in water, shaped by both natural and anthropogenic factors.

W in the Atmosphere[edit]

In the atmosphere, tungsten is typically found in low volatility and concentrations, often below 1 ng m−3, yet it can moderately increase in areas impacted by urban and industrial activities.[20] Despite tungsten's tendency to remain in solid form, recent studies have shown that it can form gaseous compounds like tungsten hexacarbonyl in landfills, with observed concentrations ranging from 0.005 to 0.01 micrograms per cubic meter, prompting closer examination of its atmospheric impact.[21] Additionally, other tungsten compounds, such as tungsten carbide and oxide fibers,[20] are known to contribute to atmospheric pollution in industrial environments and are linked to health concerns, including interstitial pulmonary fibrosis.[22]

Environmental and Health Risks[edit]

Effective remediation of tungsten (W), a potentially toxic element, is dependent on understanding its bioavailability and effects on different organisms.[23] W impedes plant and soil microorganism growth by disrupting essential enzyme activities and cellular structures,[24][25][26] induces plant cell death,[27][28] and creates harmful acidic environments.[1] Some bacteria, however, can lessen tungsten nanoparticles’ (WNPs) harmful effects.[26]

Elevated W levels can alter soil microbial populations,[29] harm earthworm reproduction, and suppress beneficial bacteria growth.[30][31][32] Microorganisms have developed W resistance mechanisms, such as efflux and siderophore entrapment, with recent studies uncovering specific genes and pathways for resistance.[33][34]

W compounds poses health risks to animals and humans, including lung and cardiovascular diseases, genotoxicity, inflammation, and cancer risks, particularly near mining sites.[35][36][37] W primarily accumulates in bones, with kidney excretion, and may lead to chronic kidney disease upon long-term exposure. [38][39][40]

Remediation Strategies[edit]

Despite limited research on W remediation, the need to mitigate its ecological risks is growing due to W's increasing industrial use.[3] Electrokinetic remediation (EKRT) and phytoremediation offer potential solutions but require further development for efficient W recovery.[41][42][43]

Water remediation techniques, including adsorption, membrane filtration, and chemical precipitation, have shown effectiveness in removing W from contaminated waters.[3] However, their applicability varies based on water characteristics and W chemical forms, which are influenced by pH,[44][45] co-occurring inorganic species,[46] and other geochemical and environmental factors.[47][48][49][50]

While promising, remediation and recycling technologies require further refinement and field-scale validation to become commercially viable for W recovery, aligning with the goals of a circular economy and addressing the ecological risks posed by W contamination.[3][51][52][53]

References[edit]

  1. ^ a b Strigul, N. (2007). "Effects of tungsten on environmental systems". Chemosphere. 62 (2): 248–258. doi:10.1016/j.chemosphere.2005.01.083. PMID 16168748.
  2. ^ EPA (2017). "Technical Fact Sheet Tungsten" (PDF). United States Environmental Protection Agency. Retrieved 2024-02-12.
  3. ^ a b c d e f g h Bolan, S.; Wijesekara, H.; Ireshika, A.; Zhang, T.; Pu, M.; Petruzzelli, G.; Pedron, F.; Hou, S.; Zhao, H.; Kadamot, S.; Wang, H.; Rinklebe, J.; Kirkham, M.B.; Bolan, N. (2023). "Tungsten contamination, behavior and remediation in complex environmental settings". Environment International. 181 (108276). doi:10.1016/j.gca.2007.03.015.
  4. ^ Almeida, J.; Faria, P.; Silva, A.S.; Mateus, E.P.; Ribeiro, A.B. (2021). "The Electrokinetic Recovery of Tungsten and Removal of Arsenic from Mining Secondary Resources: The Case of the Panasqueira Mine". Electrokinetic Remediation for Environmental Security and Sustainability. 2021 John Wiley & Sons, Ltd. pp. 85–98. doi:10.1002/9781119670186.ch4. ISBN 978-1-119-67011-7. S2CID 233662492.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. ^ Pé-Leve Santos, S.C.; Cruz, M.E.; Barroso, A.M.E.; Fonseca, C.P.S.; Guerra, M.; Carvalho, M.L. & Santos, J.P. (2014). "Elemental characterization of plants and soils in Panasqueira tungsten mining region". J. Soils Sediments. 14 (4): 778–784. Bibcode:2014JSoSe..14..778P. doi:10.1007/s11368-013-0788-x. S2CID 129004913.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ a b Hsu, S.C.; Hsieh, H.L.; Chen, C.P.; Tseng, C.M.; Huang, S.C.; Huang, C.H.; Huang, Y.T.; Radashevsky, V.; Lin, S.H. (2011). "Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing". J Hazard Mater. 189 (1–2): 193–202. doi:10.1016/j.jhazmat.2011.02.020. PMID 21377792.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ O’Connor, G.; Martin, W.; Larson, S.; Weiss, C.; Malone, P. (2009). "Distribution of tungsten on soil particles following firing of tungsten ammunition into various soil types". Land Contamination & Reclamation. 17: 67–73. doi:10.2462/09670513.918.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Senesi, N.; Padovano, G.; Brunetti, G. (1988). "Scandium, titanium, tungsten and zirconium content in commercial inorganic fertilizers and their contribution to soil". Environ. Technol. 9 (9): 1011–1020. doi:10.1080/09593338809384663.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Fu, M.H.; Tabatabai, M.A. (1988). "Tungsten content of soils, plants, and sewage sludges in Iowa". Wiley Online Library. 17 (1): 146–148. Bibcode:1988JEnvQ..17..146F. doi:10.2134/jeq1988.00472425001700010024x.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Clausen, J.L.; Korte, N. (2009). "Environmental fate of tungsten from military use". Sci Total Environ. 407 (8): 2887–2893. Bibcode:2009ScTEn.407.2887C. doi:10.1016/j.scitotenv.2009.01.029. PMID 19217645.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ a b Petruzzelli, G.; Pedron, F. (2021). "The Dynamics of Tungsten in Soil: An Overview". Environments. 8 (7): 66. doi:10.3390/environments8070066.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Oburger, E.; Cid, C.V.; Schwertberger, D.; Roschitz, C.; Wenzel, W.W. (2020). "Response of tungsten (W) solubility and chemical fractionation to changes in soil pH and soil aging". Sci. Total Environ. 731: 139224. Bibcode:2020ScTEn.731m9224O. doi:10.1016/j.scitotenv.2020.139224. PMID 32413664.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Clausen, J.L.; Bostick, B.C.; Bednar, A.J.; Sun, J.; Landis, J.D. (2011). Tungsten Speciation in Firing Range Soils (PDF) (Report). Vicksburg, MS, USA: US Army Corps of Engineers, Environmental Research and Development Center.{{cite report}}: CS1 maint: multiple names: authors list (link)
  14. ^ Lu, L.; Rao, W.; Song, Y.; Lei, M.; Tie, B.; Du, H. (2022). "Natural dissolved organic matter (DOM) affects W(VI) adsorption onto Al (hydr)oxide: Mechanisms and influencing factors". Environ. Res. 205: 112571. Bibcode:2022ER....205k2571L. doi:10.1016/j.envres.2021.112571. PMID 34919961. S2CID 245190664.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Rodríguez-Fortea, A.; Vil`a-Nadal, L.; Poblet, J.M. (2008). "Hydration of hydrogentungstate anions at different pH conditions: a Car-Parrinello molecular dynamics study". Inorg. Chem. 47 (17): 7745–7750. doi:10.1021/ic8007766. PMID 18683922.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Strigul, N.; Koutsospyros, A.; Christodoulatos, C. (2010). "Tungsten speciation and toxicity: Acute toxicity of mono- and poly-tungstates to fish". Ecotoxicol. Environ. Saf. 73 (2): 164–171. Bibcode:2010EcoES..73..164S. doi:10.1016/j.ecoenv.2009.08.016. PMID 19836837.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ Mohajerin, T.J.; Helz, G.R.; White, C.D.; Johannesson, K.H. (2014). "Tungsten speciation in sulfidic waters: Determination of thiotungstate formation constants and modeling their distribution in natural waters". Geochim. Cosmochim. Acta. 144: 157–172. Bibcode:2014GeCoA.144..157M. doi:10.1016/j.gca.2014.08.037.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Kashiwabara, T.; Takahashi, Y.; Marcus, M.A.; Uruga, T.; Tanida, H.; Terada, Y.; Akira, U. (2013). "Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean". Geochim. Cosmochim. Acta. 106: 364–378. Bibcode:2013GeCoA.106..364K. doi:10.1016/j.gca.2012.12.026.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Seiler, R.L.; Stollenwerk, K.G.; Garbarino, J.R. (2005). "Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada". Appl. Geochem. 20 (2): 423–441. Bibcode:2005ApGC...20..423S. doi:10.1016/j.apgeochem.2004.09.002.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ a b Koutsospyros, A.; Braida, W.; Christodoulatos, C.; Dermatas, D.; Strigul, N. (2006). "A review of tungsten: from environmental obscurity to scrutiny". J. Hazard Mater. 136 (1): 1–19. doi:10.1016/j.jhazmat.2005.11.007. PMID 16343746.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Feldmann J. & Cullen W. R. (1997). "Occurrence of Volatile Transition Metal Compounds in Landfill Gas: Synthesis of Molybdenum and Tungsten Carbonyls in the Environment". Environ. Sci. Technol. 31 (7): 2125–2129. Bibcode:1997EnST...31.2125F. doi:10.1021/es960952y.
  22. ^ Tanaka, J., Hiroshi, M., Terada, M., Takada, T., Suzuki, T., Narita, I., Kawabata, Y., Yamaguchi, T., Hebisawa, A., Sakai, F., & Arakawa, H. (2014). "An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease". Occupational and Environmental Medicine. 4 (3): e004407. doi:10.1136/bmjopen-2013-004407. PMID 24674995.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. ^ Datta, S., Vero, S. E., Hettiarachchi, G. M., & Johannesson, K. (2017). "Tungsten Contamination of Soils and Sediments: Current State of Science". Curr Pollution Rep. 3 (1): 55–64. Bibcode:2017CPolR...3...55D. doi:10.1007/s40726-016-0046-0. S2CID 136204502.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. ^ Adamakis, I.-D.-S., Panteris, E., Eleftheriou, E.P. (2012). "Tungsten toxicity in plants". Plants. 1 (2): 82–99. doi:10.3390/plants1020082. PMC 4844263. PMID 27137642.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ Oburger, E., Vergara, C.C., Preiner, J., Hu, J., Hann, S., Wanek, W., Richter, A. (2018). "pH- dependent bioavailability, speciation, and phytotoxicity of tungsten (W) in soil affect growth and molybdoenzyme activity of nodulated soybeans". Environ. Sci. Technol. 52 (11): 6146–6156. Bibcode:2018EnST...52.6146O. doi:10.1021/acs.est.7b06500. PMC 5990931. PMID 29701969.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ a b Selim, S., Madany, M.M., Reyad, A.M., Alowaiesh, B.F., Hagagy, N., Al-Sanea, M.M., Alsharari, S.S., AbdElgawad, H. (2021). "Saccharomonospora actinobacterium alleviates phytotoxic hazards of tungsten nanoparticles on legumes' growth and osmotic status". J. Environ. Chem. Eng. 9 (6): 106395. doi:10.1016/j.jece.2021.106395. S2CID 244176204.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Adamakis, I.-D.-S., Panteris, E., Eleftheriou, E.P. (2011). "The fatal effect of tungsten on Pisum sativum L. root cells: indications for endoplasmic reticulum stress-induced programmed cell death". Planta. 234 (1): 21–34. Bibcode:2011Plant.234...21A. doi:10.1007/s00425-011-1372-5. PMID 21344314. S2CID 8822100.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. ^ Sychta, K., Słomka, A., Kuta, E. (2021). "Insights into Plant Programmed Cell Death Induced by Heavy Metals—Discovering a Terra Incognita". Cells. 10 (1): 65. doi:10.3390/cells10010065. PMC 7823951. PMID 33406697.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Ringelberg, D.B., Reynold, C.M., Winfield, L.E., Inouye, L.S., Johnson, D.R., Bednar, A.J. (2009). "Tungsten effects on microbial community structure and activity in a soil". J. Environ. Qual. 38 (1): 103–110. Bibcode:2009JEnvQ..38..103R. doi:10.2134/jeq2008.0022. PMID 19141799.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Inouye, L.S., Jones, R.P., Bednar, A.J. (2006). "Tungsten effects on survival, growth, and reproduction in the earthworm, Eisenia fetida". Environ Toxicol Chem. 25 (3): 763–768. doi:10.1897/04-578R.1. PMID 16566161. S2CID 38620368.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Sugio, T., Kuwano, H., Negishi, A., Maeda, T., Takeuchi, F., Kamimura, K. (2001). "Mechanism of growth inhibition by tungsten in Acidithiobacillus ferrooxidans". Biosci Biotechnol Biochem. 65 (3): 555–562. doi:10.1271/bbb.65.555. PMID 11330668. S2CID 8260883.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Wichard, T., Bellenger, J.-P., Loison, A., Kraepiel, A.M. (2008). "Catechol siderophores control tungsten uptake and toxicity in the nitrogen-fixing bacterium Azotobacter vinelandii". Environ Sci Technol. 42 (7): 2408–2413. Bibcode:2008EnST...42.2408W. doi:10.1021/es702651f. PMID 18504973.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Kazakov, A.E., Rajeev, L., Luning, E.G., Zane, G.M., Siddartha, K., Rodionov, D.A. (2013). "New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria". J Bacteriol. 195 (19): 4466–4475. doi:10.1128/jb.00679-13. PMC 3807478. PMID 23913324.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Luo, Z., Li, Z., Sun, J., Shi, K., Lei, M., Tie, B., Du, H. (2023). "Multiple mechanisms collectively mediate tungsten homeostasis and resistance in Citrobacter sp. Lzp2". J. Hazard. Mater. 448: 130877. doi:10.1016/j.jhazmat.2023.130877. PMID 36731318. S2CID 256320310.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Witten, M.L., Sheppard, P.R., Witten, B.L. (2012). "Tungsten toxicity". Chem. Biol. Interact. 196 (3): 87–88. Bibcode:2012CBI...196...87W. doi:10.1016/j.cbi.2011.12.002. PMID 22182474.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ Hadrup, N., Sørli, J.B., Sharma, A.K. (2022). "Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review". Toxicology. 467: 153098. doi:10.1016/j.tox.2022.153098. PMID 35026344.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. ^ Stefaniak, A.B., Virji, M.A., Day, G.A. (2009). "Characterization of exposures among cemented tungsten carbide workers. Part I: Size-fractionated exposures to airborne cobalt and tungsten particles". J. Exposure Sci. Environ. Epidemiol. 19 (5): 475–491. doi:10.1038/jes.2008.37. PMID 18628793. S2CID 13463044.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Leggett, R.W. (1997). "A model of the distribution and retention of tungsten in the human body". Sci Total Environ. 206 (2–3): 147–165. Bibcode:1997ScTEn.206..147L. doi:10.1016/S0048-9697(97)80006-X. PMID 9394480.
  39. ^ Bolt, A.M., Mann, K.K. (2016). "Tungsten: an Emerging Toxicant, Alone or in Combination". Curr. Environ. Health Reports. 3 (4): 405–415. doi:10.1007/s40572-016-0106-z. PMID 27678292. S2CID 3439608.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ Grant, M.P., Henley, N., Dubuissez, M., Chen, N., Hartmann, U., Royal, V., Barbier, O., Pichette, V., Gerarduzz, C. (2021). "Subchronic oral exposure of tungsten induces myofibroblast transformation and various markers of kidney fibrosis". Am J Physiol Cell Physiol. 322 (2): C205–C217. doi:10.1152/ajpcell.00277.2021. PMID 34852206. S2CID 244800170.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ Braida, W., Christodoulatos, C., Ogundipe, A., Dermatas, D., O’Connor, G. (2007). "Electrokinetic treatment of firing ranges containing tungsten-contaminated soils". J. Hazard Mater. 149 (3): 562–567. doi:10.1016/j.jhazmat.2007.06.114. PMID 17686582.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. ^ Güleryüz, G., Erdemir, Ü.S., Arslan, H., Güçer, S. (2016). "Elemental composition of Marrubium astracanicum Jacq. growing in tungsten-contaminated sites". Environ Sci Pollut Res. 23 (18): 18332–18342. Bibcode:2016ESPR...2318332G. doi:10.1007/s11356-016-7028-z. PMID 27278070. S2CID 31318042.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ Erdemir, U.S., Arslan, H., Guleryuz, G., Gucer, S. (2017). "Elemental Composition of Plant Species from an abandoned Tungsten Mining Area: Are They Useful for Biogeochemical Exploration and/or Phytoremediation Purposes?". Bull. Environ. Contam. Toxicol. 98 (2017): 299–303. Bibcode:2017BuECT..98..299E. doi:10.1007/s00128-016-1899-z. PMID 27514686. S2CID 22497654.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. ^ Afkhami, A., Madrakian, T., Amini, A. (2009). "Mo(VI) and W(VI) removal from water samples by acid-treated high area carbon cloth". Desalination. 243 (1–3): 258–264. Bibcode:2009Desal.243..258A. doi:10.1016/j.desal.2008.04.028.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ Ogata, F., Iwata, Y., Kawasaki, N. (2014). "Adsorption of tungsten onto zeolite fly ash produced by hydrothermally treating fly ash in alkaline solution". Chem Pharm Bull. 62 (9): 892–897. doi:10.1248/cpb.c14-00291. PMID 25177018.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ Gecol, H., Ergican, E., Miakatsindila, P. (2005). "Biosorbent for tungsten species removal from water: Effects of co-occurring inorganic species". J. Colloid Interface Sci. 292 (2): 344–353. Bibcode:2005JCIS..292..344G. doi:10.1016/j.jcis.2005.06.016. PMID 15993417.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. ^ Afkhami, A., Aghajani, S., Mohseni, M., Madrakian, T. (2015). "Effectiveness of Ni0.5Zn0.5Fe2O4 for the removal and preconcentration of Cr(VI), Mo(VI), V(V) and W(VI) oxyanions from water and wastewater samples". J. Iran. Chem. Soc. 12 (11): 2007–2013. doi:10.1007/s13738-015-0675-z. S2CID 99426173.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. ^ Weidner, E., Ciesielczyk, F. (2019). "Removal of Hazardous Oxyanions from the Environment Using Metal-Oxide-Based Materials". Materials. 12 (6): 927. Bibcode:2019Mate...12..927W. doi:10.3390/ma12060927. PMC 6470676. PMID 30897767.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. ^ Ihsanullah, I., Sajid, M., Kabeer, M., Shemsi, A.M., Atiehet, M.A. (2020). "First Investigations on the Removal of Tungsten Species from Water Using Multi-walled Carbon Nanotubes". Water Air Soil Pollut. 231 (3): 119. Bibcode:2020WASP..231..119I. doi:10.1007/s11270-020-04485-2. S2CID 212620352.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. ^ Cao, Y., Guo, Q., Shu, Z., Jiao, C., Luo, L., Guo, W., Zhao, Q., Yina, Z. (2019). "Tungstate removal from aqueous solution by nanocrystalline iowaite: An iron-bearing layered double hydroxide". Environ. Pollut. 247: 118–127. doi:10.1016/j.envpol.2019.01.021. PMID 30669079. S2CID 58948431.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. ^ Lee, J., Kim, S., Kim, B. (2017). "A New Recycling Process for Tungsten Carbide Soft Scrap That Employs a Mechano-chemical Reaction with Sodium Hydroxide". Metals. 7 (7): 230. doi:10.3390/met7070230.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. ^ Mishra, D., Sinha, S., Sahu, K.K., Agrawal, A., & Kumar, R. (2017). "Recycling of Secondary Tungsten Resources". Trans Indian Inst Met. 70 (2): 479–485. doi:10.1007/s12666-016-1003-8. S2CID 138893874.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. ^ Makino, T., Nagai, S., Iskandar, F., Okuyama, K., Ogi, T. (2018). "Recovery and Recycling of Tungsten by Alkaline Leaching of Scrap and Charged Amino Group Assisted Precipitation". ACS Sustainable Chem Eng. 6 (3): 4246–4252. doi:10.1021/acssuschemeng.7b04689.{{cite journal}}: CS1 maint: multiple names: authors list (link)