User:Nightwalker/IEEE 802.3

From Wikipedia, the free encyclopedia

Copper based twisted pair Ethernet Standards[edit]

Comparison of twisted pair based ethernet technologies

Comparison of twisted-pair-based Ethernet physical transport layers (TP-PHYs)[1]
Name Standard Status Speed (Mbit/s)[A] Pairs required Lanes per direction Data rate
efficiency
(bit/s/Hz)[B]
Line code Symbol rate per lane (MBd) Bandwidth[C] (MHz) Max distance (m) Cable[D] Cable rating (MHz) Usage
StarLAN-1 1BASE5 802.3e-1987 obsolete 1 2 1 1 PE 1 1 250 voice grade ~12 LAN
StarLAN-10 802.3e-1988 obsolete 10 2 1 1 PE 10 10 ~100 voice grade ~12 LAN
LattisNet pre 802.3i-1990 obsolete 10 2 1 1 PE 10 10 100 voice grade ~12 LAN
10BASE-T 802.3i-1990 (CL14) legacy 10 2 1 1 PE 10 10 100 Cat 3 16 LAN [2]
10BASE-T1S 802.3cg-2019 current 10 1 1 0.8 4B5B DME 25 12.5 15 or 25[E] Cat 5 25 Automotive, IoT, M2M
10BASE-T1L 802.3cg-2019 current 10 1 1 2.66 4B3T PAM-3 7.5 3.75 1000 Cat 5 20 Automotive, IoT, M2M
100BASE-T1 802.3bw-2015 (CL96) current 100 1 1 2.66 4B3B PAM-3 75 37.5 15 Cat 5e 100 Automotive, IoT, M2M
100BaseVG 802.12-1995 obsolete 100 4 4 1.66 5B6B Half-duplex only 30 15 100 Cat 3 16 Market failure
100BASE-T4 802.3u-1995 obsolete 100 4 3 2.66 8B6T PAM-3 Half-duplex only 25 12.5 100 Cat 3 16 Market failure
100BASE-T2 802.3y-1997 obsolete 100 2 2 4 LFSR PAM-5 25 12.5 100 Cat 3 16 Market failure
100BASE-TX 802.3u-1995 current 100 2 1 3.2 4B5B MLT-3 NRZ-I 125 31.25 100 Cat 5 100 LAN
1000BASE‑TX 802.3ab-1999,
TIA/EIA 854 (2001)
obsolete 1000 4 2 4 PAM-5 250 125 100 Cat 6 250 Market failure
1000BASE‑T 802.3ab-1999 (CL40) current 1000 4 4 4 TCM 4D-PAM-5 125 62.5 100 Cat 5 100 LAN
1000BASE-T1 802.3bp-2016 current 1000 1 1 2.66 PAM-3 80B/81B RS-FEC 750 375 40 Cat 6A 500 Automotive, IoT, M2M
2.5GBASE-T 802.3bz-2016 current 2500 4 4 6.25 64B65B PAM-16 128-DSQ 200 100 100 Cat 5e 100 LAN
5GBASE-T 802.3bz-2016 current 5000 4 4 6.25 64B65B PAM-16 128-DSQ 400 200 100 Cat 6 250 LAN
10GBASE-T 802.3an-2006 current 10000 4 4 6.25 64B65B PAM-16 128-DSQ 800 400 100 Cat 6A 500 LAN
25GBASE-T 802.3bq-2016 (CL113) current 25000 4 4 6.25 PAM-16 RS-FEC (192, 186) LDPC 2000 1000 30 Cat 8 2000 LAN, Data Centre
40GBASE-T 802.3bq-2016 (CL113) current 40000 4 4 6.25 PAM-16 RS-FEC (192, 186) LDPC 3200 1600 30 Cat 8 2000 LAN, Data Centre
Name Standard Status Speed (Mbit/s)[A] Pairs required Lanes per direction Data rate
efficiency
(bit/s/Hz)[B]
Line code Symbol rate per lane (MBd) Bandwidth[C] (MHz) Max distance (m) Cable[D] Cable rating (MHz) Usage
  1. ^ a b Transfer speed = lanes × bits per hertz × spectral bandwidth
  2. ^ a b Effective bits per hertz per lane after loss to encoding overhead.
  3. ^ a b The spectral bandwidth is the maximum rate at which the signal will complete one hertz cycle. It is typical half the symbol rate, because one can send a symbol both at the positive and negative peak of the cycle. Exceptions are 10BASE-T where it is equal because it uses Manchester code, and 100BASE-TX where it is one quarter because it uses MLT-3 encoding.
  4. ^ a b At shorter cable length, it is possible to use cables of a lower grade than that is required for 100 m. For example it is possible to use 10GBASE-T on a Cat 6 cable of 55 m or less. Likewise 5GBASE-T is expected to work with Cat 5e in most use cases.
  5. ^ Cite error: The named reference t1s was invoked but never defined (see the help page).

Fibre-based and other Ethernet Standards[edit]

Legend for fibre-based PHYs[1]
Fibre type Introduced Performance
MMF FDDI 62.5/125 µm 1987 0160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm 1989 0200 MHz·km @ 850 nm
MMF OM2 50/125 µm 1998 0500 MHz·km @ 850 nm
MMF OM3 50/125 µm 2003 1500 MHz·km @ 850 nm
MMF OM4 50/125 µm 2008 3500 MHz·km @ 850 nm
MMF OM5 50/125 µm 2016 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm 1998 1.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm 2000 0.4 dB/km @ 1300/1550 nm
Name Standard Status Media Connector Transceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
Classic coaxial Ethernet - (Data rate: 10 Mbit/s - Line code: PE - Line rate: 20 MBd - Full-Duplex / Half-Duplex)
10BASE5
Thick Ethernet
DIX Standard
802.3-1983
(CL8)
obsolete
09/2003
Coax
RG-8X
(50 Ω)
AUI,
N,
Vampire tap
MAU 500 1 N/A 1 LAN; original standard;
electrical bus topology with collision detection;
uses a single coaxial cable into which you literally tap a connection by drilling into the cable to connect to the core and screen.
10BASE2
Thin Ethernet
ThinNet
Cheapernet
802.3a-1988
(CL10)
obsolete
09/2011
Coax
RG-58
(50 Ω)
BNC,
EAD/TAE-E
MAU 185 1 N/A 1 LAN; dominant standard from the mid to late 1980s;
electrical bus topology with collision detection;
coaxial cable connects machines together, each machine using a T-connector to connect to its NIC. Requires terminators at each end.
Classic fibre Ethernet - (Data rate: 10 Mbit/s - Line code: PE - Line rate: 20 MBd - Full-Duplex / Half-Duplex)
FOIRL 802.3d-1987
(CL9.9)
superseded Fibre
850 nm
ST MAU OF: 1k 2 1 1 original standard for Ethernet over fibre;
uses any optical fibre with up to 4 dB/km attenuation and at least 150 MHz bandwidth;
superseded by 10BASE-FL
10BASE-FL 802.3j-1993
(CL15/18)
largely
obsolete
Fibre
850 nm
ST FDDI: 2k 2 1 1 Nodes
10BASE-FB 802.3j-1993
(CL15/17)
largely
obsolete
Fibre
850 nm
ST FDDI: 2k 2 1 1 synchronous inter-repeater connections
10BASE-FP 802.3j-1993
(CL15/16)
obsolete Fibre
850 nm
ST FDDI: 1k 2 1 1 passive, repeaterless star network;
Market Failure, never implemented
Fast Ethernet - (Data rate: 100 Mbit/s - Line code: 4B5B × NRZ-I - Line rate: 125 MBd - Full-Duplex / Half-Duplex)
100BASE‑FX 802.3u-1995
(CL24/26)
current Fibre
1300 nm
ST
SC
MT-RJ
MIC (FDDI)
FDDI: 2k (FDX) 2 1 1 max. 412 m for half-duplex connections to ensure collision detection;
specification largely derived from FDDI.
Modal bandwidth: 800 MHz·km
[3][4]
OM1: 4k
50/125: 5k
100BASE‑LFX proprietary
(non IEEE)
current Fibre
1310 nm
LC (SFP)
ST
SC
SFP OM1: 2k 2 1 1 vendor-specific
FP laser transmitter
Full-duplex
Modal bandwidth: 800 MHz·km
[5]
OM2: 2k
62.5/125: 4k
50/125: 4k
OSx: 40k [4]
100BASE-SX TIA-785
(2000)
legacy Fibre
850 nm
ST
SC
LC
OM1: 300 2 1 1 optics sharable with 10BASE-FL, thus making it possible to have an auto-negotiation scheme and use 10/100 fibre adapters.
OM2: 300
100BASE-LX10 802.3ah-2004
(CL58)
phase-out Fibre
1310 nm
LC SFP OSx: 10k 2 1 1 full-duplex only
100BASE-BX10 802.3ah-2004
(CL58)
phase-out Fibre
TX: 1310 nm
RX: 1550 nm
LC SFP OSx: 40k 2 1 1 full-duplex only;
optical multiplexer used to split TX and RX signals into different wavelengths.
Gigabit Ethernet (GbE) - (Data rate: 1000 Mbit/s - Line code: 8B/10B × NRZ - Line rate: 1.25 GBd - Full-Duplex (or Half-Duplex))
1000BASE‑CX 802.3z-1998
(CL39)
legacy TWP
shielded
balanced
(150 Ω)
8P8C
DE-9
FC/HSSDC
CX4 (SFF-8470)
(IEC 61076-3-103)
25 4 N/A 4 Data centres;
predates 1000BASE-T; rarely used.
1000BASE‑KX 802.3ap-2007
(CL70)
current Cu-Backplane 1 1 N/A 4 PCBs
1000BASE‑SX 802.3z-1998
(CL38)
current Fibre
770 – 860 nm
ST
SC
LC
MT-RJ [6]
SFP
GBIC
direct-plug
OM1: 275 2 1 1
OM2: 550
OM3: 1k [7]
1000BASE‑LSX proprietary
(non IEEE)
current Fibre
1310 nm
LC SFP OM1: 2k [8] 2 1 1 vendor-specific;
FP laser transmitter
OM2: 1k [9]
OM4: 2k [10]
1000BASE‑LX 802.3z-1998
(CL38)
current Fibre
1270 – 1355 nm
SC
LC
SFP
GBIC
direct-plug
OM1: 550 2 1 1
OM2: 550
OM3: 550
OSx: 5k
1000BASE‑LX10 802.3ah-2004
(CL59)
current Fibre
1260 – 1360 nm
LC SFP OM1: 550 2 1 1 identical with -LX but with increased power/sensitivity;
commonly simply referred to as -LX or -LH prior to 802.3ah
OM2: 550
OM3: 550
OSx: 10k
1000BASE-BX10 802.3ah-2004
(CL59)
current Fibre
TX: 1260 – 1360 nm
RX: 1480 – 1500 nm
LC SFP OSx: 10k 1 1 1 often simply referred to as -BX
1000BASE‑EX proprietary
(non IEEE)
current Fibre
1310 nm
SC
LC
SFP
GBIC
OSx: 40k 2 1 1 vendor-specific
1000BASE‑ZX / ‑EZX proprietary
(non IEEE)
current Fibre
1550 nm
SC
LC
SFP
GBIC
OSx: 70k 2 1 1 vendor-specific
1000BASE‑RHx 802.3bv-2017
(CL115)
current Fibre
650 nm
FOT
(PMD/MDI)
POF: ≤ 50 1 1 1 Automotive, Industry, Home; [11][12]
Line code: 64b65b × PAM16
Line rate: 325 MBd
Variants: -RHA (50 m), -RHB (40 m), -RHC (15 m).
1000BASE-PX 802.3ah-2004
802.3bk-2013

(CL60)
current Fibre
TX: 1270 nm
RX: 1577 nm
SC SFP
XFP
OSx:
10k – 40k
1 1 1 EPON; FTTH;
using point-to-multipoint topology.
1000BASE‑CWDM
[13][14]
ITU-T G.694.2 current Fibre
1270 – 1610 nm
LC SFP OSx:
40k – 100k
2 1 1 CWDM makes it possible to have multiple parallel channels over 2 fibres;
spectral bandwidth 11 nm;
capable of 18 parallel channels
1000BASE‑DWDM
[15][14]
ITU-T G.694.1 current Fibre
1528 – 1565 nm
LC SFP OSx:
40k – 120k
2 1 1 DWDM makes it possible to have multiple parallel channels over 2 fibres;
spectral bandwidth 0.2 nm;
capable of 45 to 160 parallel channels
10 Gigabit Ethernet (10 GbE) - (Data rate: 10 Gbit/s - Line code: 64b/66b × NRZ - Line rate: 10.3125 GBd - Full-Duplex) [16][17][18]
10GBASE-KX4 802.3ap-2007
(CL48/71)
legacy Cu-Backplane 1 4 N/A 4 PCBs;
Line code: 8b/10b × NRZ
Line rate: 4× 3.125 GBd = 12.5 GBd
10GBASE-KR 802.3ap-2007
(CL49/72)
current Cu-Backplane 1 1 1 1 PCBs
10GPASS-XR 802.3bn-2016
(CL100-102)
current Coax ? 1 1 1 EPON Protocol over Coax (EPoC) – up to 10 Gbit/s downstream and 1.6 Gbit/s upstream for a passive optical, point-to-multipoint network using passband OFDM with up to 16384-QAM
10GBASE-CX4 802.3ak-2004
(CL48/54)
legacy twinaxial
balanced
CX4 (SFF-8470)
(IEC 61076-3-113)
(IB)
XENPAK [19]
X2
XFP
15 4 N/A 4 Data centres;
Line code: 8b/10b × NRZ
Line rate: 4× 3.125 GBd = 12.5 GBd
10GSFP+Cu
Direct Attach
SFF-8431
(2006)
current twinaxial
balanced
SFP+
(SFF-8431)
SFP+ 7
15
100
1 1 1 Data centres;
Cable types: passive twinaxial (7 m), active (15 m), active optical (AOC): (100 m)
10GBASE-SRL proprietary
(non IEEE)
current Fibre
850 nm
SC
LC
SFP+
XENPAK
X2
XFP
OM1: 11 2 1 1
OM2: 27
OM3: 100
OM4: 150
10GBASE-SR 802.3ae-2002
(CL49/52)
current Fibre
850 nm
SC
LC
SFP+
XENPAK
X2
XPAK
XFP
OM1: 33 2 1 1 Modal bandwidth (reach): 160 MHz·km (26 m), 200 MHz·km (33 m),
400 MHz·km (66 m), 500 MHz·km (82 m), 2000 MHz·km (300 m),
4700 MHz·km (400 m)
OM2: 82
OM3: 300
OM4: 400
10GBASE-LRM 802.3aq-2006
(CL49/68)
current Fibre
1300 nm
SC
LC
SFP+
XENPAK
X2
OM2: 220 2 1 1 [20] Modal bandwidth: 500 MHz·km
OM3: 220
10GBASE-LX4 802.3ae-2002
(CL48/53)
legacy Fibre
1269.0 – 1282.4 nm
1293.5 – 1306.9 nm
1318.0 – 1331.4 nm
1342.5 – 1355.9 nm
SC XENPAK
X2
OM2: 300 2 4 4 WDM; [20]
Line code: 8b/10b × NRZ
Line rate: 4× 3.125 GBd = 12.5 GBd

Modal bandwidth: 500 MHz·km
OS2: 10k
10GBASE-SW 802.3ae-2002
(CL50/52)
current Fibre
850 nm
SC
LC
SFP+
XPAK
OM1: 33 2 1 1 WAN;
WAN-PHY;
Line rate: 9.5846 GBd
direct mapping as OC-192 / STM-64 SONET/SDH streams.

-ZW: -EW with higher performance optics
OM2: 82
OM3: 300
OM4: 400
10GBASE-LW 802.3ae-2002
(CL50/52)
current Fibre
1310 nm
SC
LC
SFP+
XENPAK
XPAK
OS2: 10k 2 1 1
10GBASE-EW 802.3ae-2002
(CL50/52)
current Fibre
1550 nm
SC
LC
SFP+ OS2: 40k 2 1 1
10GBASE-ZW proprietary
(non IEEE)
current OS2: 80k
10GBASE-LR 802.3ae-2002
(CL49/52)
current Fibre
1310 nm
SC
LC
SFP+
XENPAK
X2
XPAK
XFP
OS2: 10k 2 1 1
10GBASE-PR 802.3av-2009 current Fibre
TX: 1270 nm
RX: 1577 nm
SC SFP+
XFP
OS2: 20k 1 1 1 10G EPON
10GBASE-ER 802.3ae-2002
(CL49/52)
current Fibre
1550 nm
SC
LC
SFP+
XENPAK
X2
XFP
OS2: 40k 2 1 1
10GBASE-ZR proprietary
(non IEEE)
current OS2: 80k -ER with higher performance optics
25 Gigabit Ethernet (25 GbE) - (Data rate: 25 Gbit/s - Line code: 64b/66b with and without RS-FEC(528,514) × NRZ - Line rate: 25.78125 GBd - Full-Duplex) [21]
25GAUI 802.3by-2016
(CL109A/B)
current Chip-to-chip/
Chip-to-module interface
0.25 2 N/A 1 PCBs
25GBASE-KR 802.3by-2016
(CL111)
current Cu-Backplane 1 1 N/A 1 PCBs
25GBASE-KR-S 802.3by-2016
(CL111)
current Cu-Backplane 1 1 N/A 1 PCBs;
without RS-FEC (802.3by CL108)
25GBASE-CR
Direct Attach
802.3by-2016
(CL110)
current twinaxial
balanced
SFP28
(SFF-8402)
SFP28 5 2 N/A 1 Data centres (inter-rack)
25GBASE-CR-S
Direct Attach
802.3by-2016
(CL110)
current twinaxial
balanced
SFP28
(SFF-8402)
SFP28 3 1 N/A 1 Data centres (in-rack);
without RS-FEC (802.3by CL108)
25GBASE-SR 802.3by-2016
(CL112)
current Fibre
850 nm
LC SFP28 OM3: 70 2 1 1
OM4: 100
25GBASE-LR 802.3cc-2017
(CL114)
current Fibre
1295 – 1325 nm
LC SFP28 OS2: 10k 2 1 1
25GBASE-ER 802.3cc-2017
(CL114)
current Fibre
1295 - 1310 nm
LC SFP28 OS2: 40k 2 1 1
40 Gigabit Ethernet (40 GbE) - (Data rate: 40 Gbit/s - Line code: 64b/66b × NRZ - Line rate: 4× 10.3125 GBd = 41.25 GBd - Full-Duplex) [21][22][23][24]
40GBASE-CR4
Direct Attach
802.3ba-2010
(CL82/85)
phase-out twinaxial
balanced
QSFP+
(SFF-8635)
QSFP+ 10 8 N/A 4 Data centres (inter-rack);
possible breakout / lane separation to 4× 10G
through splitter cable (QSFP+ to 4× SFP+);
involves CL73 for auto-negotiation and CL72 for link training.
40GBASE-KR4 802.3ba-2010
(CL82/84)
phase-out Cu-Backplane 1 8 N/A 4 PCBs;
possible breakout / lane separation to 4× 10G
through splitter cable (QSFP+ to 4× SFP+);
involves CL73 for auto-negotiation, and CL72 for link training.
40GBASE-SR4 802.3ba-2010
(CL82/86)
phase-out Fibre
850 nm
MPO/MTP
(MPO-12)
CFP
QSFP+
OM3: 100 8 1 4 possible breakout / lane separation to 4× 10G
through splitter cable (MPO/MTP to 4× LC-pairs).
OM4: 150
40GBASE-eSR4 proprietary
(non IEEE)
phase-out QSFP+ OM3: 300 possible breakout / lane separation to 4× 10G
through splitter cable (MPO/MTP to 4× LC-pairs).
OM4: 400
40GBASE-SR2-BiDi
(BiDirectional)
proprietary
(non IEEE)
phase-out Fibre
850 nm
900 nm
LC QSFP+ OM3: 100 2 2 2 WDM
duplex fibre each used to transmit and receive on two wavelengths;
The major selling point of this variant is its ability to run over existing 10G multi-mode fibre (i.e. allowing easy migration from 10G to 40G).
OM4: 150
40GBASE-SWDM4 proprietary
(MSA, Nov 2017)
phase-out Fibre
844-858 nm
874-888 nm
904-918 nm
934-948 nm
LC QSFP+ OM3: 240 2 4 4 SWDM[25]
OM4: 350
OM5: 440
40GBASE-LR4 802.3ba-2010
(CL82/87)
phase-out Fibre
1271 nm
1291 nm
1311 nm
1331 nm
±6.5 nm each
LC CFP
QSFP+
OSx: 10k 2 4 4 WDM
40GBASE-ER4 802.3bm-2015
(CL82/87)
phase-out QSFP+ OSx: 40k WDM
40GBASE-LX4 / -LM4 proprietary
(non IEEE)
phase-out QSFP+ OM3: 140 WDM
as primarily designed for single mode (-LR4), this mode of operation is out of specification for some transceivers.
OM4: 160
OSx: 10k
40GBASE-PLR4
(parallel -LR4)
proprietary
(non IEEE)
phase-out Fibre
1310 nm
MPO/MTP
(MPO-12)
QSFP+ OSx: 10k 8 1 4 possible breakout / lane separation to 4× 10G
through splitter cable (MPO/MTP to 4× LC-pairs).
40GBASE-FR 802.3bg-2011
(CL82/89)
phase-out Fibre
1550 nm
LC CFP OSx: 2k 2 1 1 capability to receive 1310 nm light besides 1550 nm;
allows inter-operation with a longer reach 1310 nm PHY (TBD);
use of 1550 nm implies compatibility with existing test equipment and infrastructure.
50 Gigabit Ethernet (50 GbE) - (Data rate: 50 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 26.5625 GBd - Full-Duplex) [22][26]
LAUI-2 802.3cd-2018
(CL135B/C)
current Chip-to-chip/
Chip-to-module interface
0.25 2 N/A 2 PCBs;
Line code: NRZ (no FEC)
Line rate: 2x 25.78125 GBd = 51.5625 GBd
50GAUI-2 802.3cd-2018
(CL135D/E)
current Chip-to-chip/
Chip-to-module interface
0.25 2 N/A 2 PCBs;
Line code: NRZ (FEC encoded)
Line rate: 2x 26.5625 GBd = 53.1250 GBd
50GAUI-1 802.3cd-2018
(CL135F/G)
current Chip-to-chip/
Chip-to-module interface
0.25 1 N/A 1 PCBs
50GBASE-KR 802.3cd-2018
(CL133/137)
current Cu-Backplane 1 1 N/A 1 PCBs;
total channel insertion loss ≤ 30 dB at half sampling rate = 13.28125 GHz (Nyquist).
50GBASE-CR 802.3cd-2018
(CL133/136)
current twinaxial
balanced
QSFP28,
microQSFP,
QSFP-DD,
OSFP
(SFF-8635)
QSFP28 3 1 N/A 1 Data centres (in-rack)
50GBASE-SR 802.3cd-2018
(CL133/138)
current Fibre
850 nm
LC QSFP+ OM3: 70 2 1 1
OM4: 100
50GBASE-LR 802.3cd-2018
(CL133/139)
current Fibre
1304.5 – 1317.5 nm
LC QSFP+ OS2: 10k 2 1 1
50GBASE-FR 802.3cd-2018
(CL133/139)
current Fibre
1304.5 – 1317.5 nm
LC QSFP+ OS2: 2k 2 1 1
50GBASE-ER 802.3cn-2019
(CL133/139)
current Fibre
1304.5 – 1317.5 nm
LC QSFP+ OS2: 40k 2 1 1

Fibre-based and other Ethernet Standards (100 GbE)[edit]

Legend for fibre-based PHYs[1]
Fibre type Introduced Performance
MMF FDDI 62.5/125 µm 1987 0160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm 1989 0200 MHz·km @ 850 nm
MMF OM2 50/125 µm 1998 0500 MHz·km @ 850 nm
MMF OM3 50/125 µm 2003 1500 MHz·km @ 850 nm
MMF OM4 50/125 µm 2008 3500 MHz·km @ 850 nm
MMF OM5 50/125 µm 2016 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm 1998 1.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm 2000 0.4 dB/km @ 1300/1550 nm
Name Standard Status Media Connector Transceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
100 Gigabit Ethernet (100 GbE) (1st Generation: 10GbE-based) - (Data rate: 100 Gbit/s - Line code: 64b/66b × NRZ - Line rate: 10x 10.3125 GBd = 103.125 GBd - Full-Duplex) [21][22][26]
100GBASE-CR10
Direct Attach
802.3ba-2010
(CL85)
phase-out twinaxial
balanced
CXP
(SFF-8642)
CFP2
CFP4
QSFP+
CXP
CFP2
CFP4
QSFP+
7 20 N/A 10 Data centres (inter-rack);
CXP connector uses center 10 out of 12 channels.
100GBASE-SR10 802.3ba-2010
(CL82/86)
phase-out Fibre
850 nm
MPO/MTP
(MPO-24)
CXP
CFP
CFP2
CFP4
CPAK
OM3: 100 20 1 10
OM4: 150
10×10G proprietary
(MSA, Jan 2010)
phase-out Fibre
1523 nm , 1531 nm
1539 nm , 1547 nm
1555 nm , 1563 nm
1571 nm , 1579 nm
1587 nm , 1595 nm
LC CFP OSx:
2k / 10k / 40k
2 10 10 WDM
Multi-vendor standard[27]
100 Gigabit Ethernet (100 GbE) (2nd Generation: 25GbE-based) - (Data rate: 100 Gbit/s - Line code: 256b/257b × RS-FEC(528,514) × NRZ - Line rate: 4x 25.78125 GBd = 103.125 GBd - Full-Duplex) [21][22][26][28]
100GBASE-KR4 802.3bj-2014
(CL93)
current Cu-Backplane 1 8 N/A 4 PCBs;
total insertion loss of up to 35 dB at 12.9 GHz
100GBASE-KP4 802.3bj-2014
(CL94)
current Cu-Backplane 1 8 N/A 4 PCBs;
Line code: RS-FEC(544,514) × PAM4
× 92/90 framing and 31320/31280 lane identification

Line rate: 4x 13.59375 GBd = 54.375 GBd
total insertion loss of up to 33 dB at 7 GHz
100GBASE-CR4
Direct Attach
802.3bj-2010
(CL92)
current twinaxial
balanced
QSFP28
(SFF-8665)
CFP2
CFP4
5 8 N/A 4 Data centres (inter-rack)
100GBASE-SR4 802.3bm-2015
(CL95)
current Fibre
850 nm
MPO/MTP
(MPO-12)
QSFP28
CFP2
CFP4
CPAK
OM3: 70 8 1 4
OM4: 100
100GBASE-SR2-BiDi
(BiDirectional)
proprietary
(non IEEE)
current Fibre
850 nm
900 nm
LC QSFP28 OM3: 70 2 2 2 WDM
Line rate: 2x (2x 26.5625 GBd with PAM4)
Duplex fiber with both being used to transmit and receive;
The major selling point of this variant is its ability to run over existing
LC multi-mode fiber (i.e. allowing easy migration from 10G/25G to 100G).
OM4: 100
OM5: 150
100GBASE-SWDM4 proprietary
(MSA, Nov 2017)
current Fibre
844 – 858 nm
874 – 888 nm
904 – 918 nm
934 – 948 nm
LC QSFP28 OM3: 75 2 4 4 SWDM[25]
OM4: 100
OM5: 150
100GBASE-SR1.2
(Bidirectional)
802.3bm-2015 current Fibre
850 nm
900 nm
LC QSFP28 OM3: 70 2 2 2 WDM
Line rate: 2x (2x 26.5625 GBd with PAM4)[29]
Duplex fiber with both being used to transmit and receive;
The major selling point of this variant is its ability to run over existing LC multi-mode fiber (allowing easy migration from 10G/25G to 100G). This BiDi variant is compatible with breakout from 400GBASE-4.2.[30]
OM4: 100
OM5: 100
100GBASE-LR4 802.3ba-2010
(CL88)
current Fibre
1295.56 nm
1300.05 nm
1304.59 nm
1309.14 nm
LC QSFP28
CFP
CFP2
CFP4
CPAK
OSx: 10k 2 4 4 WDM
Line code: 64b/66b × NRZ
100GBASE-ER4 802.3ba-2010
(CL88)
current QSFP28
CFP
CFP2
OSx: 40k 2 4 4 WDM
Line code: 64b/66b × NRZ
100GBASE-PSM4 proprietary
(MSA, Jan 2014)
current Fibre
1310 nm
MPO/MTP
(MPO-12)
QSFP28
CFP4
OSx: 500 8 1 4 Data centres;
Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ
Multi-vendor standard [31]
100GBASE-CWDM4 proprietary
(MSA, Mar 2014)
current Fibre
1271 nm
1291 nm
1311 nm
1331 nm
±6.5 nm each
LC QSFP28
CFP2
CFP4
OSx: 2k 2 4 4 Data centres;
WDM
Multi-vendor standard[32][33]
100GBASE-4WDM-10 proprietary
(MSA, Oct 2018)
current QSFP28
CFP4
OSx: 10k 2 4 4 WDM
Multi-vendor standard[34]
100GBASE-4WDM-20 proprietary
(MSA, Jul 2017)
current Fibre
1295.56 nm
1300.05 nm
1304.58 nm
1309.14 nm
±1.03 nm each
OSx: 20k WDM
Multi-vendor standard[35]
100GBASE-4WDM-40 proprietary
(non IEEE)
(MSA, Jul 2017)
current OSx: 40k WDM
Multi-vendor standard[35]
100GBASE-CLR4 proprietary
(MSA, Apr 2014)
current Fibre
1271 nm
1291 nm
1311 nm
1331 nm
±6.5 nm each
QSFP28 OSx: 2k 2 4 4 Data centres;
WDM
Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ
Interoperable with 100GBASE-CWDM4 when using RS-FEC;
Multi-vendor standard[32][36]
100GBASE-CWDM4 proprietary
(OCP MSA, Mar 2014)
current Fibre
1504 – 1566 nm
LC QSFP28 OSx: 2k 2 4 4 Data centres;
WDM
Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ
Derived from 100GBASE-CWDM4 to allow cheaper transceivers;
Multi-vendor standard[37]
100 Gigabit Ethernet (100 GbE) (3rd Generation: 50GbE-based) - (Data rate: 100 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 26.5625 GBd x2 = 106.25 GBd - Full-Duplex) [22][26]
100GBASE-KR2 802.3cd-2018
(CL137)
current Cu-Backplane 1 4 N/A 2 PCBs
100GBASE-CR2 802.3cd-2018
(CL136)
current twinaxial
balanced
QSFP28,
microQSFP,
QSFP-DD,
OSFP
(SFF-8665)
3 4 N/A 2 Data centres (in-rack)
100GBASE-SR2 802.3cd-2018
(CL138)
current Fibre
850 nm
MPO
4 fibres
QSFP28 OM3: 70 4 1 2
OM4: 100
100 Gigabit Ethernet (100 GbE) (4th Generation: 100GbE-based) - (Data rate: 100 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 1x 53.1250 GBd x2 = 106.25 GBd - Full-Duplex)
100GBASE-KR1 802.3ck-2022
(CL163)
current Cu-Backplane 2 N/A 1 total insertion loss ≤ 28 dB at 26.56 GHz.
100GBASE-CR1 802.3ck-2022
(CL162)
current twinaxial
balanced
SFP112,
SFP-DD112,
DSFP,
QSFP112,
QSFP-DD800,
OSFP
2 2 N/A 1
100GBASE-VR1 802.3db-2022
(CL167)
current Fibre
842 – 948 nm
LC QSFP28 OM3: 30 2 1 1
OM4: 50
100GBASE-SR1 802.3db-2022
(CL167)
current Fibre
844 – 863 nm
LC QSFP28 OM3: 60 2 1 1
OM4: 100
100GBASE-DR 802.3cd-2018
(CL140)
current Fibre
1311 nm
LC QSFP28 OSx: 500 2 1 1
100GBASE-FR1 802.3cu-2021
(CL140)
current Fibre
1311 nm
LC QSFP28 OSx: 2k 2 1 1 Multi-vendor standard[38]
100GBASE-LR1 802.3cu-2021
(CL140)
current Fibre
1311 nm
LC QSFP28 OSx: 10k 2 1 1 Multi-vendor standard[38]
100GBASE-LR1-20 proprietary
(MSA, Nov 2020)
current Fibre
1311 nm
LC QSFP28 OSx: 20k 2 1 1 Multi-vendor standard[39]
100GBASE-ER1-30 proprietary
(MSA, Nov 2020)
current Fibre
1311 nm
LC QSFP28 OSx: 30k 2 1 1 Multi-vendor standard[39]
100GBASE-ER1-40 proprietary
(MSA, Nov 2020)
current Fibre
1311 nm
LC QSFP28 OSx: 40k 2 1 1 Multi-vendor standard[39]
100GBASE-ZR 802.3ct-2021
(CL153/154)
current Fibre
1546.119 nm
LC CFP OS2: 80k+ 2 1 1 Line code: DP-DQPSK × SC-FEC
Line rate: 27.9525 GBd
Reduced bandwidth and line rate for ultra long distances.[40]

Fibre-based and other Ethernet Standards (> 100 GbE)[edit]

Legend for fibre-based PHYs[1]
Fibre type Introduced Performance
MMF FDDI 62.5/125 µm 1987 0160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm 1989 0200 MHz·km @ 850 nm
MMF OM2 50/125 µm 1998 0500 MHz·km @ 850 nm
MMF OM3 50/125 µm 2003 1500 MHz·km @ 850 nm
MMF OM4 50/125 µm 2008 3500 MHz·km @ 850 nm
MMF OM5 50/125 µm 2016 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm 1998 1.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm 2000 0.4 dB/km @ 1300/1550 nm
Name Standard Status Media Connector Transceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
200 Gigabit Ethernet (200 GbE) (1st Generation: 25GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 8x 26.5625 GBd = 212.5 GBd - Full-Duplex) [22][26][41]
200GAUI-8 802.3bs-2017
(CL120B/C)
current Chip-to-chip/
Chip-to-module interface
0.25 16 N/A 8 PCBs
200 Gigabit Ethernet (200 GbE) (2nd Generation: 50GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 26.5625 GBd x2 = 212.5 GBd - Full-Duplex) [22][26][41]
200GAUI-4 802.3bs-2017
(CL120D/E)
current Chip-to-chip/
Chip-to-module interface
0.25 8 N/A 4 PCBs
200GBASE-KR4 802.3cd-2018
(CL137)
current Cu-Backplane 1 8 N/A 4 PCBs;
total insertion loss of ≤ 30 dB at 13.28125 GHz
200GBASE-CR4 802.3cd-2018
(CL136)
current twinaxial
copper
cable
QSFP-DD,
QSFP56,
microQSFP,
OSFP
N/A 3 8 N/A 4 Data centres (in-rack)
200GBASE-SR4 802.3cd-2018
(CL138)
current Fibre
850 nm
MPO/MTP
(MPO-12)
QSFP56 OM3: 70 8 1 4
OM4: 100
200GBASE-DR4 802.3bs-2017
(CL121)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP56 OS2: 500 8 ? 4
200GBASE-FR4 802.3bs-2017
(CL122)
current Fibre
1271 – 1331 nm
LC QSFP56 OS2: 2k 2 4 4 WDM
200GBASE-LR4 802.3bs-2017
(CL122)
current Fibre
1295.56 – 1309.14 nm
LC QSFP56 OS2: 10k 2 4 4 WDM
200GBASE-ER4 802.3cn-2019
(CL122)
current Fibre
1295.56 – 1309.14 nm
LC QSFP56 OS2: 40k 2 4 4 WDM
200 Gigabit Ethernet (200 GbE) (3rd Generation: 100GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 53.1250 GBd x2 = 212.5 GBd - Full-Duplex) [22][26][41]
200GAUI-2 802.3ck-2022
(CL120F/G)
current Chip-to-chip/
Chip-to-module interface
N/A 0.25 4 N/A 2 PCBs
200GBASE-KR2 802.3ck-2022
(CL163)
current Cu backplane 1 4 N/A 2 PCBs;
total insertion loss of ≤ 28 dB at 26.56 GHz
200GBASE-CR2 802.3ck-2022
(CL162)
current twinaxial copper cable QSFP-DD,
QSFP112,
SFP-DD112,
DSFP,
OSFP
N/A 2 4 N/A 2
200GBASE-VR2 802.3db-2022
(CL167)
current Fiber
850 nm
MPO
(MPO-12)
QSFP
QSFP-DD
SFP-DD112
OM3: 30 4 1 2
OM4: 50
200GBASE-SR2 802.3db-2022
(CL167)
current Fiber
850 nm
MPO
(MPO-12)
QSFP
QSFP-DD
SFP-DD112
OM3: 60 4 1 2
OM4: 100
200 Gigabit Ethernet (200 GbE) (4th Generation: 200GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x1 = 212.5 GBd - Full-Duplex)
200GAUI-1 802.3dj
(CL176D/E)
development Chip-to-chip/
Chip-to-module interface
N/A 0.25 2 N/A 1 PCBs
200GBASE-KR1 802.3dj
(CL178)
development Cu backplane N/A 2 N/A 1 PCBs;
total insertion loss of ≤ 40 dB at 53.125 GHz
200GBASE-CR1 802.3dj
(CL179)
development twinaxial copper cable ? N/A 1 2 N/A 1
200GBASE-DR1 802.3dj
(CL180)
development Fiber
1310 nm
? ? OS2: 500 2 1 1
400 Gigabit Ethernet (400 GbE) (1st Generation: 25GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 16x 26.5625 GBd = 425 GBd - Full-Duplex) [22]
400GAUI-16 802.3bs-2017
(CL120B/C)
current Chip-to-chip/
Chip-to-module interface
0.25 32 N/A 16 PCBs
400GBASE-SR16 802.3bs-2017
(CL123)
current Fibre
850 nm
MPO/MTP
(MPO-32)
CFP8 OM3: 70 32 1 16
OM4: 100
OM5: 100
400 Gigabit Ethernet (400 GbE) (2nd Generation: 50GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 26.5625 GBd x2 = 425.0 GBd - Full-Duplex) [22]
400GAUI-8 802.3bs-2017
(CL 120D/E)
current Chip-to-chip/
Chip-to-module interface
0.25 16 N/A 8 PCBs
400GBASE-KR8 proprietary
(ETC) (CL120)
current Cu-Backplane 1 8 N/A 8 WDM
400GBASE-SR8 802.3cm-2020
(CL138)
current Fiber
850 nm
MPO/MTP
(MPO-16)
QSFP-DD,
OSFP
OM3: 70 16 1 8
OM4: 100
OM5: 100
400GBASE-SR4.2
(Bidirectional)
802.3cm-2020
(CL150)
current Fiber
850 nm
912 nm
MPO/MTP
(MPO-12)
QSFP-DD OM3: 70 8 2 8 Bidirectional WDM
OM4: 100
OM5: 150
400GBASE-FR8 802.3bs-2017
(CL122)
current Fibre
1273.54 – 1309.14 nm
LC QSFP-DD,
OSFP
OS2: 2k 2 8 8 WDM
400GBASE-LR8 802.3bs-2017
(CL122)
current Fibre
1273.54 – 1309.14 nm
LC QSFP-DD,
OSFP
OS2: 10k 2 8 8 WDM
400GBASE-ER8 802.3cn-2019
(CL122)
current Fibre
1273.54 – 1309.14 nm
LC QSFP-DD OS2: 40k 2 8 8 WDM
400 Gigabit Ethernet (400 GbE) (3rd Generation: 100GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 53.1250 GBd x2 = 425.0 GBd - Full-Duplex) [22]
400GAUI-4 802.3ck-2022
(CL120F/G)
current Chip-to-chip/
Chip-to-module interface
0.25 8 N/A 4 PCBs
400GBASE-KR4 802.3ck-2022
(CL163)
current Cu-Backplane 1 8 N/A 4 PCBs;
total insertion loss of ≤ 28 dB at 26.56 GHz
400GBASE-CR4 802.3ck-2022
(CL162)
current twinaxial
copper
cable
QSFP-DD,
QSFP112,
OSFP
N/A 2 8 N/A 4 Data centres (in-rack)
400GBASE-VR4 802.3db-2022
(CL167)
current Fibre
850 nm
MPO
(MPO-12)
QSFP-DD OM3: 30 8 1 4
OM4: 50
OM5: 50
400GBASE-SR4 802.3db-2022
(CL167)
current Fibre
850 nm
MPO
(MPO-12)
QSFP-DD OM3: 60 8 1 4
OM4: 100
OM5: 100
400GBASE-DR4 802.3bs-2017
(CL124)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD,
OSFP
OS2: 500 8 1 4
400GBASE-DR4-2 802.3df
(CL124)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD
OSFP
OS2: 2k 8 1 4
400GBASE-XDR4
400GBASE-DR4+
proprietary
(non IEEE)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD
OSFP
OSx: 2k 8 1 4
400GBASE-FR4 802.3cu-2021
(CL151)
current Fibre
1271−1331 nm
LC QSFP-DD,
OSFP
OS2: 2k 2 4 4 Multi-Vendor Standard[42]
400GBASE-LR4-6 802.3cu-2021
(CL151)
current Fibre
1271−1331 nm
LC QSFP-DD OSx: 6k 2 4 4
400GBASE-LR4-10 proprietary
(MSA, Sept 2020)
current Fibre
1271−1331 nm
LC QSFP-DD OSx: 10k 2 4 4 Multi-Vendor Standard[43]
400GBASE-ZR 802.3cw
(CL155/156)
development Fibre LC QSFP-DD,
OSFP
OSx: 80k 2 1 2 59.84375 GBd (DP-16QAM)
400 Gigabit Ethernet (400 GbE) (4th Generation: 200GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x2 = 425 GBd - Full-Duplex)
400GAUI-2 802.3dj
(CL176D/E)
development Chip-to-chip/
Chip-to-module interface
N/A 0.25 2 N/A 1 PCBs
400GBASE-KR2 802.3dj
(CL178)
development Cu backplane N/A 4 N/A 2 PCBs;
total insertion loss of ≤ 40 dB at 53.125 GHz
400GBASE-CR2 802.3dj
(CL179)
development twinaxial copper cable ? N/A 1 4 N/A 2
400GBASE-DR2 802.3dj
(CL180)
development Fiber
1310 nm
? ? OS2: 500 4 1 2
800 Gigabit Ethernet (800 GbE) (3rd Generation: 100GbE-based) - (Data rate: 800 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 53.1250 GBd x2 = 425.0 GBd - Full-Duplex) [22]
800GAUI-8 802.3df
(CL120F/G)
current Chip-to-chip/
Chip-to-module interface
0.25 16 N/A 8 PCBs
800GBASE-KR8 802.3df
(CL163)
current Cu-Backplane 1 16 N/A 8 PCBs;
total insertion loss of ≤ 28 dB at 26.56 GHz
800GBASE-CR8 802.3df
(CL162)
current twinaxial
copper
cable
QSFP−DD800
OSFP
N/A 2 16 N/A 8 Data centres (in-rack)
800GBASE-VR8 802.3df
(CL167)
current Fibre
850 nm
MPO
(MPO-16)
QSFP-DD
OSFP
OM3: 30 16 1 8
OM4: 50
OM5: 50
800GBASE-SR8 802.3df
(CL167)
current Fibre
850 nm
MPO
(MPO-16)
QSFP-DD
OSFP
OM3: 60 16 1 8
OM4: 100
OM5: 100
800GBASE-DR8 802.3df
(CL124)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-16)
QSFP-DD
OSFP
OS2: 500 16 1 8
800GBASE-DR8-2 802.3df
(CL124)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-16)
QSFP-DD
OSFP
OS2: 2k 16 1 8
800 Gigabit Ethernet (800 GbE) (4th Generaton: 200GbE-based) - (Data rate: 800 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x4 = 850 GBd - Full-Duplex)
800GAUI-4 802.3dj
(CL176D/E)
development Chip-to-chip/
Chip-to-module interface
N/A 0.25 8 N/A 4 PCBs
800GBASE-KR4 802.3dj
(CL178)
development Cu backplane N/A 8 N/A 4 PCBs;
total insertion loss of ≤ 40 dB at 53.125 GHz
800GBASE-CR4 802.3dj
(CL179)
development twinaxial copper cable ? N/A 1 8 N/A 4
800GBASE-DR4 802.3dj
(CL180)
development Fiber
1310 nm
? ? OS2: 500 8 1 4
1.6 Terabit Ethernet (1.6 TbE) (4th Generaton: 200GbE-based) - (Data rate: 1.6 Tbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x8 = 1700 GBd - Full-Duplex)
1.6TAUI-8 802.3dj
(CL176D/E)
development Chip-to-chip/
Chip-to-module interface
N/A 0.25 16 N/A 8 PCBs
1.6TBASE-KR8 802.3dj
(CL178)
development Cu backplane N/A 16 N/A 8 PCBs;
total insertion loss of ≤ 40 dB at 53.125 GHz
1.6TBASE-CR8 802.3dj
(CL179)
development twinaxial copper cable ? N/A 1 16 N/A 8
1.6TBASE-DR8 802.3dj
(CL180)
development Fiber
1310 nm
? ? OS2: 500 16 1 8

References[edit]

  1. ^ a b c d Charles E. Spurgeon (2014). Ethernet: The Definitive Guide (2nd ed.). O'Reilly Media. ISBN 978-1-4493-6184-6.
  2. ^ "Introduction To Fast Ethernet" (PDF). Contemporary Control Systems, Inc. 2001-11-01. Retrieved 2018-08-25.
  3. ^ "Introduction To Fast Ethernet" (PDF). Contemporary Control Systems, Inc. 2001-11-01. Retrieved 2018-08-25.
  4. ^ a b "Datasheet for EDS-408A-MM-ST". MOXA. 2019-08-06. Retrieved 2020-03-21.
  5. ^ "Datasheet for SFP-1FE Series" (PDF). MOXA. 2018-10-12. Retrieved 2020-03-21.
  6. ^ "Gigabit Ethernet Multimode SFP MT-RJ Transceiver" (PDF). tyco Electronics. 2003-11-01. Retrieved 2018-08-26.
  7. ^ "Multimode Optical Fiber Selection & Specification" (PDF). Corning Cable Systems LLC. 2012. Retrieved 2022-12-23.
  8. ^ "Datasheet for SFP-1G Series" (PDF). MOXA. 2018-10-12. Retrieved 2020-03-21.
  9. ^ "Datasheet for SFP-1G Series" (PDF). MOXA. 2018-10-12. Retrieved 2020-03-21.
  10. ^ "SFP1G-SX-31". FS.com. 2019-01-01. Retrieved 2020-03-21.
  11. ^ "1000BASE-RH PHY system simulations" (PDF). IEEE 802.3bv Task Force. 2015-09-08. Retrieved 2018-08-25.
  12. ^ "Optical Ethernet in Automotive" (PDF). Knowledge Development for POF S.L. (KDPOF). 2017-07-03. Retrieved 2018-08-25.
  13. ^ "CWDM SFP Datasheet". Cisco. 2005-12-29. Retrieved 22 March 2020.
  14. ^ a b "DWDM Technology And DWDM Network Overview". FS.com. FS.com. 28 November 2016. Retrieved 22 March 2020.
  15. ^ "DWDM-SFP Data Sheet". Cisco. Cisco. Retrieved 22 March 2020.
  16. ^ "Cisco 10-Gigabit Ethernet Transceiver Modules Compatibility Matrix". Cisco. 2018-08-19. Retrieved 2018-08-26.
  17. ^ "Confused by 10GbE optics modules?". Network World. 2010-06-12. Retrieved 2018-08-26.
  18. ^ "Common 10G Fiber Transceiver: 10G XENPAK, 10G X2, 10G XFP, 10G SFP+". Blog of Fiber Transceivers. 2013-06-18. Retrieved 2018-08-26.
  19. ^ "End-of-Sale and End-of-Life Announcement for the Cisco 10GBASE XENPAK Modules". Cisco. 2015-04-01. Retrieved 2018-08-26.
  20. ^ a b "Network Topologies and Distances" (PDF). MC Communications. 2007-11-14. Retrieved 2018-08-25.
  21. ^ a b c d "Evolution of Ethernet Speeds: What's New and What's Next" (PDF). Alcatel-Lucent. 2015-06-03. Retrieved 2018-08-28.
  22. ^ a b c d e f g h i j k l "Exploring The IEEE 802 Ethernet Ecosystem" (PDF). IEEE. 2017-06-04. Retrieved 2018-08-29.
  23. ^ "Cisco 40-Gigabit Ethernet Transceiver Modules Compatibility Matrix". Cisco. 2018-08-23. Retrieved 2018-08-26.
  24. ^ "A Quick Overview of 40GbE & 40GbE Components". Blog of Fiber Transceivers. 2016-01-13. Retrieved 2018-09-21.
  25. ^ a b "SWDM Alliance MSA". SWDM Alliance. Retrieved 2020-07-27.
  26. ^ a b c d e f g "Multi-Port Implementations of 50/100/200GbE" (PDF). Brocade. 2016-05-22. Retrieved 2018-08-29.
  27. ^ "IEEE Communications Magazine December 2013, Vol. 51, No. 12 - Next Generation Backplane and Copper Cable Challenges" (PDF). IEEE Communications Society. 2013-12-01. Retrieved 2018-08-28.
  28. ^ "Cisco 100GBASE QSFP-100G Modules Data Sheet". Cisco. Retrieved 2022-09-16.
  29. ^ "Cisco 100Gbps QSFP100 SR1.2 BiDi Pluggable Transceiver At-a-Glance". Cisco. Retrieved 2022-09-16.
  30. ^ "100G PSM4 Specification" (PDF). PSM4 MSA Group. 2014-09-15. Retrieved 2018-08-28.
  31. ^ a b "What's the Difference Between 100G CLR4 and CWDM4?". fiber-optic-transceiver-module.com. 2017-02-12. Retrieved 2018-08-28.
  32. ^ "100G CWDM4 MSA Technical Specifications" (PDF). CWDM4 MSA Group. 2015-11-24. Retrieved 2018-08-28.
  33. ^ Ghiasi, Ali. "100G 4WDM-10 MSA Technical Specifications Release 1.0" (PDF). 4wdm-msa.org. 4-Wavelength WDM MSA. Retrieved 5 April 2021.
  34. ^ a b Hiramoto, Kiyo. "100G 4WDM-20 & 4WDM-40 MSA Technical Specifications" (PDF). 4wdm-msa.org. 4-Wavelength WDM MSA. Retrieved 5 April 2021.
  35. ^ "100G CLR4 QSFP28 Optical Transceivers" (PDF). Accelink. 2017-06-30. Retrieved 2018-08-28.
  36. ^ "Open Optics MSA Design Guide" (PDF). Open Compute Project - Mellanox Technologies. 2015-03-08. Retrieved 2018-08-28.
  37. ^ a b "100G-FR and 100G-LR Technical Specifications". 100G Lambda MSA Group. Retrieved 2021-05-26.
  38. ^ a b c Nowell, Mark. "100G-LR1-20, 100G-ER1-30, 100G-ER1-40 Technical Specifications". 100glambda.com. 100G Lambda MSA. Retrieved 26 May 2021.
  39. ^ "QPSK vs DP-QPSK - difference between QPSK and DP-QPSK modulation". RF Wireless World. 2018-07-15. Retrieved 2018-08-29.
  40. ^ a b c "100Gb/s Electrical Signaling" (PDF). IEEE 802.3 NEA Ad hoc. Retrieved 2021-12-08.
  41. ^ Nowell, Mark. "400G-FR4 Technical Specification". 100glambda.com. 100G Lambda MSA Group. Retrieved 26 May 2021.
  42. ^ Nowell, Mark. "400G-LR4-10 Technical Specification". 100glambda.com. 100G Lambda MSA Group. Retrieved 26 May 2021.