User:OlsonEEB4611/sandbox

From Wikipedia, the free encyclopedia


Effects[edit]

Underwater video frame of the sea floor in the western Baltic covered with dead or dying crabs, fish and clams killed by oxygen depletion

Due to the hypoxic conditions present in dead zones, marine life within these areas tends to be scarce. Most fish and motile organisms tend to emigrate out to the zone as oxygen concentrations fall, and benthic populations may experience severe losses in when oxygen concentrations are below 0.5 mg l-1 O2.[1] In severe anoxic conditions, microbial life may experience dramatic shifts in community identity as well, resulting in an increased abundance of anaerobic organisms as aerobic microbes decrease in number and switch energy sources for oxidation such as nitrate, sulfate, or iron reduction. Sulfur reduction is a particular concern as Hydrogen sulfide is toxic and stresses most organisms within the zone further, exacerbating mortality risks.[2]

Low oxygen levels can have severe effects on survivability of organisms inside the area while above lethal anoxic conditions. Studies conducted along the Gulf Coast of North America have shown hypoxic conditions lead to reduction of reproductive rates and growth rates in a variety of organisms including fish and benthic invertebrates. Organisms able to leave the area typically do so when oxygen concentrations decrease to less than 2 mg l-1.[1] At these oxygen concentrations and below, organisms that survive inside the oxygen deficient environment and are unable to escape the area will often exhibit progressively worsening stress behavior and die. Surviving organisms tolerant of hypoxic conditions often exhibit physiological adaptations appropriate for persisting within hypoxic environments. Examples of such adaptations include increased efficiency of oxygen intake and use, lowering required amount of oxygen intake through reduced growth rates or dormancy, and increasing the usage of anaerobic metabolic pathways. [1]

Community composition in benthic communities is dramatically disrupted by periodic oxygen depletion events, such as those of Seasonal Dead Zones and occurring as a result of Diel Cycles. The longterm effects of such hypoxic conditions result in a shift in communities, most commonly manifest as a decrease in species diversity through mass mortality events. Reestablishment of benthic communities depend upon composition of adjacent communities for larval recruitment.[1] This results in a shift towards faster establishing colonizers with shorter and more opportunistic life strategies, potentially disrupting historic benthic compositions.

The influence of dead zones on fisheries and other marine commercial activities varies by the length of occurrence and location. Dead zones are often accompanied by a decrease in biodiversity and collapse in benthic populations, lowering the diversity of yield in commercial fishing operations, but in cases of eutrophication-related dead zone formations, the increase in nutrient availability can lead to temporary rises in select yields among pelagic populations, such as Anchovies.[1] However, studies estimate that the increased production in the surrounding areas do not offset the net decrease in productivity resulting from the dead zone. For instance, an estimated 17,000 MT of carbon in the form of prey for fisheries has been lost as a result of Dead Zones in the Gulf of Mexico.[3] Additionally, many stressors in fisheries are worsened by hypoxic conditions. Indirect factors such as increased success by invasive species and increased pandemic intensity in stressed species such as oysters both lead to losses in revenue and ecological stability in affected regions.[4]

Despite most other life forms being killed by the lack of oxygen, jellyfish can thrive and are sometimes present in dead zones in vast numbers. Jellyfish blooms produce large quantities of mucus, leading to major changes in food webs in the ocean since few organisms feed on them. The organic carbon in mucus is metabolized by bacteria which return it to the atmosphere in the form of carbon dioxide in what has been termed a "jelly carbon shunt".[5] The potential worsening of Jellyfish Blooms as a result of human activities has driven new research into the influence of dead zones on jelly populations. The primary concern is the potential for dead zones to serve as breeding grounds for jelly populations as a result of the hypoxic conditions driving away competition for resources and common predators of jellyfish.[6] The increased population of jellyfish could have high commercial costs with loss of fisheries, destruction and contamination of trawling nets and fishing vessels, and lowered tourism revenue in coastal systems.[6]

REVERSAL SECTION: -> Replace first two paragraphs of Reversal section

The recovery of benthic communities is primarily dependent upon the length and severity of hypoxic conditions inside the hypoxic zone. Less severe conditions and temporary depletion of oxygen allow rapid recovery of benthic communities in the area due to reestablishment by benthic larvae from adjacent areas, with longer conditions of hypoxia and more severe oxygen depletion leading to longer reestablishment periods.[3] Recovery also depends upon stratification levels within the area, so heavily stratified areas in warmer waters are less likely to recover from anoxic or hypoxic conditions in addition to being more susceptible to eutrophication driven hypoxia.[3] The difference in recovery ability and susceptibility to hypoxia in stratified marine environments is expected to complicate recovery efforts of dead zones in the future if ocean warming continues.

Small scale hypoxic systems with rich surrounding communities are the most likely to recover after nutrient influxes leading to eutrophication stop. However, depending on the extent of damage and characteristics of the zone, large scale hypoxic condition could also potentially recover after a period of a decade. For example, the Black Sea dead zone, previously the largest in the world, largely disappeared between 1991 and 2001 after fertilizers became too costly to use following the collapse of the Soviet Union and the demise of centrally planned economies in Eastern and Central Europe. Fishing has again become a major economic activity in the region.[7]


  1. ^ a b c d e Rabalais, Nancy N.; Turner, R. Eugene; Wiseman, William J. (2002). "Gulf of Mexico Hypoxia, A.K.A. "The Dead Zone"". Annual Review of Ecology and Systematics. 33 (1): 235–263. doi:10.1146/annurev.ecolsys.33.010802.150513. ISSN 0066-4162.
  2. ^ Diaz, Robert; Rosenberg, Rutger (1995-01-01). "Marine benthic hypoxia: A review of its ecological effects and the behavioural response of benthic macrofauna". Oceanography and marine biology. An annual review [Oceanogr. Mar. Biol. Annu. Rev.] 33, : 245–303.{{cite journal}}: CS1 maint: extra punctuation (link)
  3. ^ a b c Diaz, R. J.; Rosenberg, R. (2008-08-15). "Spreading Dead Zones and Consequences for Marine Ecosystems". Science. 321 (5891): 926–929. doi:10.1126/science.1156401. ISSN 0036-8075.
  4. ^ Anderson, R. S.; Brubacher, L. L.; Calvo, L. Ragone; Unger, M. A.; Burreson, E. M. (1998). "Effects of tributyltin and hypoxia on the progression of Perkinsus marinus infections and host defence mechanisms in oyster, Crassostrea virginica (Gmelin)". Journal of Fish Diseases. 21 (5): 371–380. doi:10.1046/j.1365-2761.1998.00128.x. ISSN 0140-7775.
  5. ^ Yong, Ed (6 June 2011). "Jellyfish shift ocean food webs by feeding bacteria with mucus and excrement". Discover Magazine. Retrieved 4 October 2018.
  6. ^ a b Richardson, Anthony J.; Bakun, Andrew; Hays, Graeme C.; Gibbons, Mark J. (2009-06-01). "The jellyfish joyride: causes, consequences and management responses to a more gelatinous future". Trends in Ecology & Evolution. 24 (6): 312–322. doi:10.1016/j.tree.2009.01.010. ISSN 0169-5347. PMID 19324452.
  7. ^ Mee, Laurence (November 2006). "Reviving Dead Zones". Scientific American.