Portal:Energy

From Wikipedia, the free encyclopedia
Main pageNew articles & Tasks
The Energy Portal
Welcome to Wikipedia's Energy portal, your gateway to energy. This portal is aimed at giving you access to all energy related topics in all of its forms.
Page contents: Selected articleSelected imageSelected biographyDid you know?General imagesQuotationsRelated portalsWikiprojectsMajor topicsCategoriesHelpAssociated Wikimedia

Introduction

A plasma globe, using electrical energy to create plasma, light, heat, movement and a faint sound

In physics, energy (from Ancient Greek ἐνέργεια (enérgeia) 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

Common forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, and the internal energy contained within a thermodynamic system. All living organisms constantly take in and release energy.

Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy.

Human civilization requires energy to function, which it gets from energy resources such as fossil fuels, nuclear fuel, or renewable energy. The Earth's climate and ecosystems processes are driven by the energy the planet receives from the Sun (although a small amount is also contributed by geothermal energy). (Full article...)

Selected article

Oil shale, an organic-rich fine-grained sedimentary rock, contains significant amounts of kerogen (a solid mixture of organic chemical compounds) from which technology can extract liquid hydrocarbons. The name oil shale represents a double misnomer, as geologists would not necessarily classify the rock as a shale, and its kerogen differs from crude oil. Kerogen requires more processing to use than crude oil, which increases its cost as a crude-oil substitute both financially and in terms of its environmental impact.

Deposits of oil shale occur around the world, including major deposits in the United States of America. Estimates of global deposits range from 2.8 trillion to 3.3 trillion barrels (450×109 to 520×109 m3) of recoverable oil.

The chemical process of pyrolysis can convert the kerogen in oil shale into synthetic crude oil. Heating oil shale to a sufficiently high temperature will drive off a vapor which processing can distill (retort) to yield a petroleum-like shale oil—a form of unconventional oil—and combustible oil-shale gas (the term shale gas can also refer to gas occurring naturally in shales). Industry can also burn oil shale directly as a low-grade fuel for power generation and heating purposes and can use it as a raw material in chemical and construction-materials processing.

Oil shale has gained attention as an energy resource as the price of conventional sources of petroleum has risen and as a way for some areas to secure independence from external suppliers of energy. At the same time, oil-shale mining and processing involve a number of environmental issues, such as land use, waste disposal, water use, waste-water management, greenhouse-gas emissions and air pollution. Estonia and China have well-established oil shale industries, and Brazil, Germany, Israel and Russia also utilize oil shale.

Selected image

Did you know?

  • Despite projections of producing four times as much power as it used in heating, the Riggatron fusion reactor was never built due to a lack of funding?

Selected biography

{{{caption}}}
Enrico Fermi (September 29, 1901 – November 28, 1954) was an Italian physicist most noted for his work on the development of the first nuclear reactor, and for the development of quantum theory. Fermi won the 1938 Nobel Prize in Physics for his work on induced radioactivity.

Fermi was well-known for his simplicity in solving problems. Whenever possible, he avoided complicated mathematics and obtained quick results based on order of magnitude estimates. Fermi also meticulously recorded his calculations in notebooks, and later used to solve many new problems that he encountered based on these earlier known problems.

After accepting the 1938 Nobel Prize in Stockholm, Fermi immigrated to New York with his family to escape the anti-Semitic laws of Fascist Italy, as his wife Laura was Jewish.

After working at Columbia University, Fermi went to the University of Chicago and began studies that led to the construction of the world's first nuclear reactor Chicago Pile-1 (CP-1). The first artificial, self-sustaining, nuclear chain reaction was initiated within CP-1, on December 2, 1942.

In the news

7 April 2024 – Russian invasion of Ukraine
The IAEA reports that the Zaporizhzhia Nuclear Power Plant's Unit 6 was targeted by a drone strike, although nuclear safety has not been compromised, according to the statement. (IAEA)

General images

The following are images from various energy-related articles on Wikipedia.

Quotations

  • "My administration is committed to a leadership role on the issue of climate change. We recognize our responsibility and will meet it - at home, in our hemisphere, and in the world." – George W. Bush, 2001
  • "While the Kyoto Protocol is a crucial step forward, that step is far too small. And as we consider how to go further still, there remains a frightening lack of leadership." – Kofi Annan, 2006
  • "It is going to be very difficult to keep temperature increases down to between 2 and 3 degrees centigrade [3.6 - 5.4°F]. We should work very hard to do that." – Nicholas Stern, 2006
  • "Halting global warming requires urgent, unprecedented international cooperation, but the needed actions are feasible and have additional benefits for human health, agriculture and the environment." – James E. Hansen, 2004

Related portals

WikiProjects

Major topics

Help

Puzzled by energy?
Can't answer your question?
Don't understand the answer?


For further ideas, to leave a comment, or to learn how you can help improve and update this portal, see the talk page.

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals

Purge server cache