Solar eclipse of April 30, 2060

From Wikipedia, the free encyclopedia
Solar eclipse of April 30, 2060
Map
Type of eclipse
NatureTotal
Gamma0.2422
Magnitude1.066
Maximum eclipse
Duration315 s (5 min 15 s)
Coordinates28°00′N 20°54′E / 28°N 20.9°E / 28; 20.9
Max. width of band222 km (138 mi)
Times (UTC)
Greatest eclipse10:10:00
References
Saros139 (32 of 71)
Catalog # (SE5000)9642

A total solar eclipse will occur on Friday, April 30, 2060. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Related eclipses[edit]

Solar eclipses 2059–2061[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipses 2059 to 2061
119 May 22, 2058

Partial
124 November 16, 2058

Partial
129 May 11, 2059

Total
134 November 5, 2059

Annular
139 April 30, 2060

Total
144 October 24, 2060

Annular
149 April 20, 2061

Total
154 October 13, 2061

Annular

Saros 139[edit]

This eclipse is a member of saros series 139, repeating every 18 years, 11 days, 8 hours, containing 71 events. The series started with partial solar eclipse on May 17, 1501. It contains hybrid eclipses on August 11, 1627, through to December 9, 1825; and total eclipses from December 21, 1843, through to March 26, 2601. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The solar eclipse of June 13, 2132, will be the longest total solar eclipse since July 11, 1991, at 6 minutes, 55.02 seconds.

The longest duration of totality will be produced by member 39 at 7 minutes, 29.22 seconds on July 16, 2186.[2] After that date, the durations of totality will decrease until the series ends. This date is the longest solar eclipse computed between 4000 BC and AD 6000.[3] Saros series eclipses occur during the Moon's ascending node (a term related to our equator and polar-naming conventions).

Series members 24–45 occur between 1901 and 2300
24 25 26

February 3, 1916

February 14, 1934

February 25, 1952
27 28 29

March 7, 1970

March 18, 1988

March 29, 2006
30 31 32

April 8, 2024

April 20, 2042

April 30, 2060
33 34 35

May 11, 2078

May 22, 2096

June 3, 2114
36 37 38

June 13, 2132

June 25, 2150

July 5, 2168
39 40 41

July 16, 2186

July 27, 2204

August 8, 2222
42 43 44

August 18, 2240

August 29, 2258

September 9, 2276
45

September 20, 2294

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

Notes[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.
  3. ^ Ten Millennium Catalog of Long Solar Eclipses, −3999 to +6000 (4000 BCE to 6000 CE) Fred Espenak.

References[edit]