Solar eclipse of March 18, 1988

From Wikipedia, the free encyclopedia
Solar eclipse of March 18, 1988
Map
Type of eclipse
NatureTotal
Gamma0.4188
Magnitude1.0464
Maximum eclipse
Duration226 s (3 min 46 s)
Coordinates20°42′N 140°00′E / 20.7°N 140°E / 20.7; 140
Max. width of band169 km (105 mi)
Times (UTC)
Greatest eclipse1:58:56
References
Saros139 (28 of 71)
Catalog # (SE5000)9482

A total solar eclipse occurred on March 18, 1988. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia and southern Philippines.

Observation[edit]

The tourism office of the General Santos City government in the Philippines promoted it as a big tourism event. Hordes of scientists, astronomers, journalists, TV crews and tourists from all over the globe observed the totality from there. Then President of the Philippines Corazon Aquino also joined in to experience the event.[1]

Related eclipses[edit]

Eclipses of 1988[edit]

Solar eclipses of 1986–1989[edit]

There were 8 solar eclipses between April 9, 1986 and August 31, 1989.

Solar eclipse series sets from 1986 to 1989
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119
1986 April 9
Partial
−1.08215 124
1986 October 3
Hybrid
0.99305
129
1987 March 29
Hybrid
−0.30531 134
1987 September 23
Annular
0.27869
139
1988 March 18
Total
0.41879 144
1988 September 11
Annular
−0.46811
149
1989 March 7
Partial
1.09815 154
1989 August 31
Partial
−1.19279

Saros 139[edit]

This eclipse is a member of saros series 139, repeating every 18 years, 11 days, 8 hours, containing 71 events. The series started with partial solar eclipse on May 17, 1501. It contains hybrid eclipses on August 11, 1627, through to December 9, 1825; and total eclipses from December 21, 1843, through to March 26, 2601. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The solar eclipse of June 13, 2132, will be the longest total solar eclipse since July 11, 1991, at 6 minutes, 55.02 seconds.

The longest duration of totality will be produced by member 39 at 7 minutes, 29.22 seconds on July 16, 2186.[2] After that date, the durations of totality will decrease until the series ends. This date is the longest solar eclipse computed between 4000 BC and AD 6000.[3] Saros series eclipses occur during the Moon's ascending node (a term related to our equator and polar-naming conventions).

Series members 24–45 occur between 1901 and 2300
24 25 26

February 3, 1916

February 14, 1934

February 25, 1952
27 28 29

March 7, 1970

March 18, 1988

March 29, 2006
30 31 32

April 8, 2024

April 20, 2042

April 30, 2060
33 34 35

May 11, 2078

May 22, 2096

June 3, 2114
36 37 38

June 13, 2132

June 25, 2150

July 5, 2168
39 40 41

July 16, 2186

July 27, 2204

August 8, 2222
42 43 44

August 18, 2240

August 29, 2258

September 9, 2276
45

September 20, 2294

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between January 5, 1935 and August 11, 2018
January 4-5 October 23-24 August 10-12 May 30-31 March 18-19
111 113 115 117 119

January 5, 1935

August 12, 1942

May 30, 1946

March 18, 1950
121 123 125 127 129

January 5, 1954

October 23, 1957

August 11, 1961

May 30, 1965

March 18, 1969
131 133 135 137 139

January 4, 1973

October 23, 1976

August 10, 1980

May 30, 1984

March 18, 1988
141 143 145 147 149

January 4, 1992

October 24, 1995

August 11, 1999

May 31, 2003

March 19, 2007
151 153 155

January 4, 2011

October 23, 2014

August 11, 2018

References[edit]

  1. ^ "Solar Eclipse Photos circa 1988 in GenSan". GenSan News Online Mag. Archived from the original on 10 March 2016.
  2. ^ Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.
  3. ^ Ten Millennium Catalog of Long Solar Eclipses, −3999 to +6000 (4000 BCE to 6000 CE) Fred Espenak.

External links[edit]

Photos: